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ON THE TRANSPORT PROPERTIES OF A PARTIALLY
IONIZED GAS IN THE PRESENCE OF
ELECTRIC AND MAGNETIC FIELDS

By H. A. Hassan
SUMMARY

The transfer equations as given by Burgers are used to
give explicit expressions for the diffusion velocities, the
heat flux vectors, and the stress tensors of the constitu-
ents of a partially ionized gas. The calculation takes into
consideration the presence of electric and magnetic fields
and pressure, temperature, concentration, and velocity gra-
dients. The results correspond to what is normally referred
to as a "second approximation."

INTRODUCT ION

The equations governing the flow of a plasma have been
derived starting from the appropriate Boltzmann equations by
Kolodner,l Burgers,2,3 and Herdan and Liley4 using Grad's
thirteen moment method. In addition to the conservation equa-
tions, this scheme gives separate equations for the stress
tensors, heat flux vectors, and the diffusion velocities. 1In
general, the simultaneous solution of such a system of equa-
tions is quite complicated even for the simplest problems.
Therefore, the more conventional approach of finding explicit
expressions for the transport relations first, and using the
resulting expressions in the conservation equations, is often
employed. The expressions for the transport relations are
usually obtained from the derived equations for the stress,
diffusion, and heat flux by the method of successive approxi-
nmations.

Expressions for the transport properties of a fully ion-
ized gas were given by Burgers and Herdan and Liley. The
slightly ionized case was considered by Yang.® In this work,
the gas is assumed to be partially ionized and, to preserve



symmetry, the magnetic and electric field vectors are assumed
to have arbitrary directions.

The derivation is based upon Burgers' transfer equations
and employs the complete equations that result in the second
approximation. Because of the long-range influence of Cou-
lomb forces, collision cross sections of charged particles
are much larger than cross sections of collisions involving
neutral atoms. This result and the fact that the electron-
atom mass ratio is small compared to unity have been used to
simplify the governing equations. Further simplification re-
sults if one assumes that the degree of ionization is not very
close to zero or unity. Because these limiting cases were
discussed by previous authors, this assumption will be employ-
ed here.

When the derived expressions for the stress, heat flux,
and diffusion are substituted into the comnservation equations,
equations of the Navier-Stokes type result. Such equations
can be used, among other things, for the analysis of MHD gen-
erators and plasma accelerators,

The scheme presented here for the calculation of the
transport relations is an alternative to the Chapman-Enskog
scheme, Experience with pure gases shows that the two schemes
lead to similar results,

SYMBOLS
25,2y ,8, quantities defined by equation (40)
bg,bj,bo guantities defined by equation (42)
E) magnetic field strength
Cl,Cz,C3 quantities appearing in equation (46)
dg quantity defined by equation (32)
e charge of proton
eg charge of species s
ekl j permutation tensor
-

E electric field strength




=

- e e
Ex = E + UxB

vector defined by equation (5)
vector defined by equation (40)
vector defined by equation (6)
vector defined by equation (42)
current density of species s
Boltzmann constant

quantity defined by equation (38)
friction coefficient

mass of particle s

tensor defined by equation (8)
n = Ny + nj, number of nuclei

number density of species s

pressure of species s

stress tensor of species s

viscous stress tensor of species s

heat flux component of species s

vector defined by equation (32)

residual heat flux component of species s
vector defined by equation (37)

kinetic temperature of species s

mean velocity component

mean velocity vector

diffusion velocity component of species s



Zst’zét’zgt quantities defined by equation (1.)

Zst’zéij) collision cross sections

o degree of ionization

o quantity defined by equation (62)
BesBa quantities defined by equation (26)

Y,YesYisY¥ga quantities defined by equation (30)

6e’6i’6a quantities defined by equation (26)

éhk Kronecker delta

A quantity defined by equation (64)

€ € = 0uy/0X;, divergence of the mean flow
€hk tensor defined by equation (8)

3sh quantity defined by equation (11)

O5h vector defined by equation (6)

(Ag) hk tensors defined by equation (62)

Vg quantity defined by equation (60)

P mean density

Ps density of species s

(Gé)hk tensor defined by equation (7)

T mean collision time between ions and electrons
Yon vector defined by equation (5)

W electron cyclotron frequency

GOVERNING EQUATIONS

The complete equations which give the second apgroxima-
tion to the transport properties can be written as2,



Zpswsh =0 (1)

Zst
Ysn = 2. Kst[(Wsh - Wen) - g—— 5 (MtTsh ~ MsTth)]

(2)
0 . - s 4 _t Sz (Wop - W)
sh ~ té ms + mt st 2 “st‘' " sh th
+ _—Eﬁ___[i z , (r +r,,) + (3 s . Bt ¢ Hyr
mg + Mg 5 st sh th mt ms st sh
2 kT (3]
- (3 + xst)rth]} -5 Kssm 2gs Tsh (3)
s

(6 pk = Mg py

- - Za, v 7mgy) 2327 (PO

1/2
ts mg + Mt Mg m¢ S 3 mt

+ Dg g% % Z;t - % (Pt)kh}; s,t = i,e,a (4)
where
Ysh = £ + [(3; - %? jBXEah; fop = - g;ﬁ + %? g%% + n_e _E¥
(5)
Osh = emzs[g h ~ (rst)h], 8sh = %é—‘s— Z%:— (6)



2
*x *
(6 nk = Pseni - (BRdgx + Efdgn - 5 OpiEldes) (7)

e
s
M) pi = Figlextj Ps)ne +ene; Pkt 1B (8)
dup  Ouy 2 S oup
€hk = 3%, T 9K, ~ 3 9bk €5 € = Fx, (9)
1/2
2 MNhght Ts Tt
Kst = 3 W[2k<@ *mg s tlst (10)
(12) (13)
z -1 -2 Zst z', =1 - 4 Zst
st ~ 5 Zgt d st ~ 35 Zgt
(22)
1 ZSt 7 '
ZSt = Zst ‘SSt =1 + SZSt - —2- zSt (11)
dsh 5
sh = kn_Tg ~ 2 "sh
Jsh = 0g8sWshny I = 2. Jsn (13)
£* > =
—.
and eg, Mg, pg, ng, Tg, Pg, Wgy, dgp, Jg, (Pglkp

denote, respectively, the charge, particle mass, mass density,
number density, temperature, pressure, diffusion velocity,
heat flux, current density, and viscous stress of species s.
The quantities p, P, U, z{td), B, B, &, eyy; de-
note the density, pressure, mean velocity, average collision
cross sections, electric and magnetic fields, Kronecker delta,
and the permutation tensor, respectively. The second-order
tensor (Ms)hk was given by Burgers in component form; it can
be shown, however, that it has the representation given above,
In writing equation (6), the term (eg/mg)E¥(Pg)nhi was assumed
small compared to the other terms; this assumption decouples
the equations for heat flow and viscous stresses and makes the
solution of equations (1)-(3) independent of that of equations

(4).



Before attempting a solution of equations (1)-(4) for the
quantities rgp, Wgh, and (Pg)hk, a study of the relative
orders of magnitudes of the terms on the right-hand side of
equations (2)-(4) will be undertaken. The first to be con-
sidered are the friction coefficients Kg¢. Since

m, << m; mo=my, = my, Zyg << Zgy; S,t = e,i, (15)
equations (10) and (15) show that the ratios

K K K,
et << 1, t = a,i; KEE << 1, Kla
Ktt ei

— << 1, (16)
ii

provided the degree of ionization is not very close to zero

or unity.

For particles interacting according to the inverse power
law; i.e., the potential energy of interaction is @(r) = dr-5;
one finds

_1-23_2 R TR S PR ( -2
sgp =1 =83 -5, 24 -1 35<4 S) 3 6)
Az(a)( 2
1"
A = 3 - ] 17
st Al(é) 5) a7
-1 corresponds to Coulomb interactions, d =4 corresponds
to Maxwellian molecules, while O = o corresponds to hard

elast?c'spheres. Since Ag9/A] 1is of order unity, the above
quantities are, in general, of order unity.

For a pure gas in the absence of electric and magnetic
fields, equations (3), (4), (6), and (7) give

r o 25 kns bTS
sh = 4 KggzZgg OXp

2 T 7m 7(22)
P€p = - F Dg /kTS/ms z52 (ps)hk. (18)



Hence,

1/2
Tih  (Te Tah o _a (Me\'/? Zee (19)
Teh m ’ Teh 1 - a\nl) Zagq
and
1/2
(Pe)hk‘N Tg) / Z3a (Pi)pk ~ Zaa (20)
(P,) hk m Zee!  (Polpkx  Zii-

In writing equations (19) and (20), the results of equations
(17) were employed and a is the degree of ionization.

ignoring the coupling between heat flux and dif-

Finally,
fusion, equations (1), (2), and (13) show that
Jihl~ 1 Kia’v 1l/m_ 1/2 2, (21)
Jp 1 - a Kije ~ a\mg Zie®

The results of equations (15)-(21) are now used to simpli-
fy equations (2)-(4). Using these results, equations (1), (2),

and (13) give

nj nj Jin 1
w = - — W4 = em m—— ——— w = _(J - J ) (22)
ah n, 'ih n  en, ’ eh = en_"“ih h
Jh .
Yeh = —Kie gﬁ; - ZieKiereh (23)
ni Jih 1
Yah = - Kai(} + HZ en; + ZaaKeaTeh - 3 z23iKaiTah- (24)

Similarly, equations (3) and (4) yield, respectively,

Oeh = = Oe(Ten * BeIp)s Oip = = O3Typ,
(25)

8ah = - 6a(rah + BaJdin),



where

kT kKT
e 2 1" 2 1 1"
ée = 7;;(5 KeeZee Keijei)’ 6i =35 T Kii%ii
6 _ k 2 T K 11} Kal(T T )-g " l (3 I )
a - ml{5 ‘a“aaZaa * 7 a ¥ 'i/|5 %ai * 3 * 2ai
5 kTe KjeZie 5 k(T + Tj) KaiZaj nj
Be = 3 mg €ngdg’ Ba = g m en;0_ Lo+ n, (26)
and
(6e)nk = Mk = = Ye(Pelnk (27)
(60nk = Midpk = = Yi(Pidnk = Y(Plnk (28)
Pa€nk = — Ya(Palnk: (29)
where
2 - — 22
Ye = —5'(1 + \/2)ne JkTe/me Zée )
Y; = 2 ny v/ET;/m 2{%2)
i =% Bi i ii
2 2k 1/2 ,2 4
Y, = 5 D, JkTa7m Zégz) + -‘]1; niZai[m—(Ti + Ta)] (—5- Zgqi * §>

1

Y =3 nizai[gE(Ti * Ta)]l/z (é - % Z;i)'

m

(30)

Solution of the present problem reduces, therefore, to

the solution of the system (22)-(29).
solved first for rgy and Jgp.

Equations (22)-(25) are
The resulting expressions for

Jgp are then used in equations (27)-(29) to give the desired

expressions for (Pg)pk-.
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The Diffusion Velocities and Heat Flux Vectors

The diffusion velocities and the heat flux vectors can
be calculated from the simultaneous solutions of equations
(22)-(25), The method to be employed in solving this sys-
tem is to use equations (6) and (25) to express rg, in
terms of Jgp (or Wgp) and then employ the resulting ex-
pressions in equations (22)-(24) to give explicit expres-

sions for Jsh'

It is seen from equations (6) and (25) that the equa-
tions for rqph C€an be written as

- =
rsh - ds(rsXB)h = Qgh> (31)
where
egP
d, = =5_S = - -
s msas, th degeh BeJh’ Qih =T digih
kP_ OT
S a a
Qah = = 3 —= === - B,J3p.
ah 2 ns, 9Kp a“ih (32)
The solution of equation (31) can be expressed as
1 - = - =
rep = —[Qsn + dg(QgxB)y + d2(Qg-B)By]. (33)
1 + (Bdg)
Hence,
Be - - i
Ton = Rop - 5(Jn + do(JxB)y + d2(T-B)By] (34)
1 + (Bde)
Tin = Rip (35)
(36)

Tah = Ban -~ BaJih’

where



-d

R S [ d. (2.xB) a2 (g -B)By]
= 8sh + gsXblp + Es- h
sh (1 + (Bds)2 s sS\B6s sS\os
aTS = 2 =
- kS ﬁ + dS(VTSXB)h + dS(VTS.B)Bh (37)
and
5kPg
kg = 5= - (38)
2msés[1 + (Bdg)“]
Equations (34) and (36) are now substituted into equa-
tion (24). After rearrangement, one finds
9 > - -
Jin = Fn + a30Jd, + dg(J'B)By] + ag(JxB)y, (39)
where
1 Zaji
Fh = 3L-fan + ZeaKeaReh = 5 KaiRanl
0
n
a; = - BezeaKea 5 ag = g; 1% + ajdg
agll + (Bdg)“] Y
1 nj 1 .
ag = Kai{?ﬁI(} *n,) "2 Zaisé}’ n = ng + nj (40)

Similarly, equations (5), (23), and (39) give
-2 - - -
Jh = Gh + bl(JXB)h + bz(J'B)Bh, (41)
where

1 - —>
Gh = E[feh - (FXB)h + ZieKieReh]

11
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N B Y ZicKicPede _ 1 ( ZieKieBede
1_-.b—— - 2 ’ 2——_'5_| 2
0 1 + (Bdg) 1+ (Bdy)
by = - azB2 _ Kie | _ZieKiePe (42)

eng 1 + (Bde)2

Equation (41) can be solved to give an explicit expression for
Jp. The result may be expressed as

J 1 [Gp + bq(GxB) P2 * b%('é) B)By, ] (43)
= —{ G + b3 + —————= (G- .
BTl w2 P B 71 -~ pgB2 b

If the effects of gradients are negligible, equation (43) may
be used to give an expression for the electrical conductivity.

As a first step in writing expressions for the heat flux
vectors and the diffusion velocities, expressions for Fp and
Gp in terms of the pressure, temperatures' and concentrations
gradients, and the electric and magnetic fields will be given.
Using equations (5), (37), and (40), one obtains

1]

Fp = é%&g;% - %? é%i + % iKaika Zi: - ZeaKeake[gih
+ de(VTexg)h + dg(VTe-E)Bh}} . (44)
Similarly, equations (5), (16), (37), and (42) give
G, = - g%-g;% + en Ef + gg[VPa - %? VP + % z,; K397, )xB]h
+ zieKleke[%’I(‘—z + do(VToxB), + dg(VTe.‘B’)BhJ} . (45)

It is seen from equations (34), (36), and (39) that a
vector of the form

- - > - 3
CqJ + Cz(JxB) + C3(J-B)B (46)

12



appear frequently., Using equations (43) and (45), it can be
shown that the above vector can be represented as

1 2.F - =
1 + (blB)
Ci(bs, + b2) + C,(1 + b2B2)
+[ 1(bg + bf 3 1B blcz}(a’.‘s’)ﬁ’}, (47)
1 - byB2
where
zxﬁ’ - -1 {(VP + en E*)XE)+ —]"—[(VP - n_a vpP
= Ba e e ag a n
1, k 9T )28 - Biw Mla 1
+ -2— aitai a B]B - ;5( Pa - T VP + 'i‘ ZaiKaiVTa)
zjeKieke 2 o d 2 2> =
+ ———3;———[(Bde) VT, - dg (VT xB) - dg(VT,-B)B] (48)
and
- > 1 = 2_9 ->
G'B = - =[VPg + engE™ + 2joKjcke(l + dgB™)VTe]-B. (49)
0

The derived expressions for rgp and Jgp can now be
used to express Wgh and qgh. Using equations (22) and
(39), one finds

nj 1 9,2 =
Yan = -~ 7, ¥in = - saz{Fh + 2109 + 423 B)By]

- =
+ ag(JxB)y } (50)

13
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and

1 > - ' 922
weh = Eﬁ_[Fh + (a1 - l)Jh + a2(JxB)h + alde(J-B)Bh]. (51)

Similarly, the heat flux vectors are obtained from equations
(12) and (34)-(36) as

Be - -
dep = PelRen - 5LJh + de(IxB)p
1+ (Bde)
2,372 5
+ dZ(J-B)By] + 2 Woy (52)
- P.[R 3w (53)
9h = PilRijp + 5 Winl

and

e ding
Q. = Pa{Rah - 5a{Fh +ay[Jy + de(J-B)Bh]
= -
+ az(JXB)h]-F g Wah} . (54)

The total heat flux vector, 4gj, is obtained by adding equa-
tions (52)~(54). The results may be written as

= S -
= 22 PsRsh * 5 2: Pswsh saPaJih

~ 5[ Jh + de (JxB)p + dg(J-B)By]. (55)

1 + (Bde)

The explicit dependence of the above vector on pressure,
temperatures and concentrations' gradients, and electric and
magnetic fields may be obtained by utilizing equations (46)
and (47). 1In general, each of the vectors under discussion
may be represented as

.



E:asVPs + EE b VT + 2; CS(VPSXE) + ZZ fS(VTSig)

- -
+ ggB + hsﬁ* + WS(E*XE); s = a,i,e, (56)

with
VPg = kngVTg + kTgVng. (57)

The substitutions into equations (50)-(55) are straightforward.
However, because the resulting expressions are unusually long,
they will not be included here.

The above expressions assume a relatively simple form if
one assumes that collisions with the atoms follow the Maxwelli-
an molecule approximation. In this case,

Zat = Za'.t = 0, Z;t = 2.59, Tat = 1, t = a,e,i. (58)

1"

For charged particles Zog = 3/5, Zgy = 2, I5¢ = 1.3, and,
therefore,

dgB = wT/¥g, (59)
where
w = eB/mg, T = ngm,/Kiq, Yo = -1.865
1& - Kii/Kle (60)

= = 1/2
For the case where T, = T, 1ﬁ = (m/2mg) /2,

The Stress Tensors

The stress tensors can be calculated from equations (27)-
(29). Equation (29) gives the desired expression for the neu-
tral viscous stress tensor and shows that the second approxi-
mation to (Py)kh is not influenced by the electric and

15



magnetic fields. Using equations (8), (27)-(29), it is seen
that (Pg)kxnp is governed by an equation of the type

(Pgdhk + as[ekLJ(Ps)hL + eth(PS)kLJBj = (Ag)kh, S = i,e,a,

(61)
where
€s (6e) hk Pa
= - X = - ——————— = e co—
Cs mgyYg’ (Aednk Yo (Aa) nk Y Chk
(6 )hk p
A = - 170X, ¥ 3 o . 62
) hi i Y5 Ya Chk (62)

The solution of equation (61) can be written as
(Pg) hk
1
= ﬁg{(ls)kh + aglejrs(Ag)nj + €4 jk{rg)kjIBe
3
+ Z;iag[Bh(xs)km + Br(Ag) hm1Bp
3(e}, B B, )B B, (A.) 2628, B.B.B, 0\ ) 1%, (63)
t Agi€hiPk t CkLjPn/PmPLiAs/mj * “0sPKPhPjPL A/ gl T
where
Dg = 1 + 4(asB)2, ag =1 + (agB)2. (64)

Assuming T, = Ti and using equations (30), one finds

1/2
m
a_ B = 5 wT, aiB = - g(§%> wT, (65)

3(2 + Y2)

16



The expressions given above for (Pi)kh and (Pg)yp de-
pend on the current densities Jgp. With Jjh and J, given
by equations (39) and (43), equations (63) give the desired ex-
pressions for the viscous stress tensors.

The over-all stress tensor pp)p is defined as

Phk = Opk>, Ps + >, (Ppk = P + > (Po)pk. (66)
Phk may be calculated from equation (63). For small electric
fields it is expected that equations (20) will hold, at least
approximately. In such cases, the over-all viscous stress

tensor may be approximated by the neutral viscous stress
tensor.,

Discussion and Conclusions

Explicit expressions for the transport relations of a
partially ionized gas in the presence of electric and magnetic
fields and pressure, temperatures, concentrations, and velocity
gradients are derived, The derivation assumes that the plasma
is neutral, the degree of ionization is not very close to zero
or unity, the collision cross sections of charged particles are
much larger than cross sections involving neutral atoms, and
mg/m << 1.

The first assumption is probably the most restrictive be-
cause the plasma is not neutral in the sheath region. How-.
ever, removing such a restriction would result in expressions
which are much more complex than those presented here. There-
fore, in spite of the fact that this case can be handled by
the method presented here, it was thought that such a refine-
ment was not warranted at present.

The second and third assumptions are actually inter-
related. The degree of ionization should be such that equa-
tions (16) are satisfied. For degrees of ionization smaller
than the lower limit, the results for the slightly ionized
case hold, while for values greater than the maximum, the gas
may be treated as fully ionized.

The gquestion arises whether the derived expressions can
explain the presence of the so-called anomalous or turbulent
diffusion. Keeping other things constant, the expression for
Wgh shows that for large B the diffusion is proportional to

17
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1/B2. This is the prediction of the so-called classical dif-
fusion. However, in cases like discharges crossed with mag-
netic fields where anomalous or 1/B diffusion has been ob-
served, the conservation equations show that the flow prop-
erties depend, in a given situation, on the power input and
the magnetic field. This means that if one takes the varia-
tion of the degree of ionization, temperature, etc., with

B, there is the possibility that 1/B diffusion can be ob-
served over a certain range of operating conditions.

The equations presented here are not valid in the range
where T — @, This is because equations (2)-(4) are not
valid for a collisionless plasma. To obtain meaningful
results in the limit of 7 —> «, the exact equations should
be employed.

The derived expressions for qgp, Wgh, (Pg)knh ©an be
used to derive expressions for the transport coefficients,
Because Tg # Tj # Ty, one can calculate, in addition to the
usual coefficients, "multicomponent heat conduction coef-
ficients.” Such a calculation is not reported here because
the conservation equations are expressed in terms of the
fundamental quantities Wgy, Jdgh, 4gh, and (Pglgkhn
and not the transport coefficients.

North Carolina State
Raleigh, North Carolina
February 28, 1964
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